三峡库区消落带不同海拔狗牙根草地土壤微生物生物量碳氮磷含量特征
杨文航, 任庆水, 秦红, 宋虹, 袁中勋, 李昌晓*
三峡库区生态环境教育部重点实验室,重庆市三峡库区植物生态与资源重点实验室,西南大学生命科学学院,重庆 400715
*通信作者Corresponding author. E-mail:lichangx@swu.edu.cn

作者简介:杨文航(1993-),男,陕西西安人,在读硕士。E-mail:464492693@qq.com

摘要

为探究库区消落带优势草本植物狗牙根人工植被恢复后土壤质量及肥力的变化,选择三峡库区消落带150, 160和170 m海拔人工构建狗牙根植被土壤为研究对象,并以裸地作为对照,测定土壤微生物生物量碳、氮、磷和相关理化性质。结果表明:(1)各海拔狗牙根微生物生物量均显著高于裸地,表明狗牙根人工植被构建对土壤微生物恢复具有重要意义。(2)土壤微生物生物量碳、氮含量160 m高程显著高于150和170 m高程,但土壤微生物生物量磷(SMBP)却显著低于150和170 m高程,需要特别注意P元素的下移,加强水体P含量的检测。(3)土壤微生物生物量碳氮比和碳磷比变化范围分别为5.93~15.62和7.11~19.99,土壤微生物生物量碳、氮、磷占土壤有机碳、全氮、全磷百分比的范围分别为0.68%~2.57%、0.68%~3.33%、1.95%~5.23%。狗牙根土壤微生物生物量碳氮比和碳磷比显著低于裸地,表明狗牙根土壤有效氮、有效磷高于裸地;土壤微生物生物量碳、氮、磷占土壤有机碳、全氮、全磷百分比显著高于裸地,表明狗牙根土壤营养元素周转速率快于裸地。(4)微生物生物量碳、氮、磷与土壤有机碳、全氮和土壤含水率有显著或极显著相关性,与土壤pH值呈不同程度的负相关。因此,在三峡库区消落带进行狗牙根草地恢复重建能显著提高土壤微生物生物量及土壤质量,对加强三峡库岸生态系统的稳定性具有重要意义。

关键词: 狗牙根; 植被恢复; 微生物生物量碳氮磷; 消落带
Characteristics of soil microbial biomass carbon, nitrogen, and phosphorus under Cynodon dactylon vegetation at different altitudes in the hydro-fluctuation belt of the Three Gorges Dam Reservoir
YANG Wen-hang, REN Qing-shui, QIN Hong, SONG Hong, YUAN Zhong-xun, LI Chang-xiao*
Key Laboratory of Eco-environment in the Three Gorges Reservoir Region of the Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
Abstract

The full operation of the Three Gorges Dam Reservoir (TGDR) on the Yangtze River, China, has formed a hydro-fluctuation belt with an annual change in water level of almost 30 m and spanning an area of 350 km2. These large changes in the water level have led to a direct decline in the plant community within the hydro-fluctuation belt. Revegetation is an environmentally friendly measure to restore the ecological integrity of the hydro-fluctuation zone in the TGDR, and is also crucial for maintaining sound riparian ecosystem function and services. The study site (107°32'-108°14' E, 30°03'-30°35' N) was located in the Ruxi River basin in Gonghe Village, Shibao Township, Zhong County, in the Chongqing municipality of China. We monitored the changes in soil fertility and quality upon revegetation of Cynodon dactylon in the hydro-fluctuation belt of the TGDR. Plots of C. dactylon grassland at three elevations (150, 160 and 170 m above sea level) in Zhong County in the TGDR were sampled and the contents of soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN), and soil microbial biomass phosphorus (SMBP) were determined. The results showed that: (1) The soil microbial biomass at each elevation was significantly higher in C. dactylon grassland than in unplanted soil, indicating that artificial vegetation restoration had significantly increased the soil microbial biomass; (2) The SMBC and SMBN were significantly higher at 160 m elevation than at 150 m and 170 m elevations, but the SMBP was significantly lower at 160 m elevation than at 150 m and 170 m elevations. Thus, special attention should be paid to the transfer of P into water. (3) At the different altitudes, the ratio of SMBC/SMBN ranged from 5.32 to 15.62, and the ratio of SMBC/SMBP ranged from 7.11 to 19.99. The range of SMBC/SOC (soil organic carbon) was 0.68%-2.57%, the range of SMBN/TN (total nitrogen) was 0.68%-3.33%, and the range of SMBP/TP (total phosphorus) was 1.95%-5.23%. The SMBC/SMBN and SMBC/SMBP ratios were significantly higher in C. dactylon grassland than in unplanted soil, indicating that there was more available nitrogen and available phosphorus in C. dactylon grassland than in unplanted soil. In addition, the soil turnover rate was faster in the C. dactylon grassland than in unplanted soil; (4) Soil microbial biomass was significantly correlated with soil organic carbon, total nitrogen, and soil moisture, but was negatively correlated with soil pH. Our study showed that the physical and chemical properties of soil under revegetating C. dactylon significantly affected the soil microbial biomass. Thus, revegetation of C. dactylon increased the soil microbial biomass and also enhanced soil quality in the hydro-fluctuation belt of the TGDR.

Keyword: Cynodon dactylon; vegetation restoration; soil microbial biomass carbon; nitrogen; phosphorus; hydro-fluctuation belt

消落带是指因水位季节性涨落使土地周期性淹没和出露成陆地形成的水陆衔接地带[1]。三峡水库竣工后, 采取“ 蓄清排浑” 的运行方式, 形成垂直落差达30 m, 总面积约348.93 km2的消落带[2]。在特殊的水文变化下, 大量原有植被消亡, 生物多样性降低[3], 生态屏障功能减退[4]。进而导致生态系统水土保持功能和自身修复能力的下降, 引起土壤侵蚀、土地退化等问题[5]。消落带植被在防治水土流失和土地退化[6]、提高土壤肥力、降低水体污染等方面具有重要作用, 进行三峡库区消落带的植被恢复及生态系统重建十分必要[7]。研究表明狗牙根(Cynodon dactylon)可以适应水淹及干旱环境, 为库区消落带主要的耐淹植物[8]

狗牙根又名爬根草、铺地草, 属禾本科多年生草本植物, 广泛分布于三峡库区消落带[9]。狗牙根的繁殖能力很强, 既可种子繁殖, 也可营养繁殖, 而且对水淹和干旱具有较强的适应性[10]。目前对狗牙根的研究主要集中在水分胁迫条件下根系酶活性变化[11], 水淹条件对狗牙根存活及恢复生长的影响, 及光合特性等方面[12]。此外, 有研究报道狗牙根水淹出露后, 狗牙根矿质元素发生显著变化[13], 但狗牙根植被构建后, 有关土壤微生物, 尤其是周转速度快[14]的土壤微生物生物量碳氮磷含量变化却报道较少。在植被-土壤系统中, 土壤微生物参与养分循环和物质代谢过程, 直接影响地球生物化学循环, 对植物凋落物降解、养分循环与平衡、土壤理化性质改善起着重要作用[15]。土壤微生物是生态系统的重要组成部分, 土壤微生物生物量的多少及其变化是土壤肥力高低及其变化的重要依据之一[16]。土壤微生物生物量的动态变化是土壤变化趋势的早期指示, 对外界反应具有很高灵敏性, 可以作为反映环境和管理措施变化的敏感标记, 对土壤利用和管理具有重要的指示意义[17]。基于以上部分, 我们提出两个科学问题:1. 三峡库区消落带不同海拔狗牙根土壤微生物生物量碳氮磷含量特征如何变化。2. 海拔、植被以及海拔× 植被交互作用对于土壤微生物生物量碳氮磷含量的影响如何。因此, 本实验以三峡库区忠县石宝镇共和村一典型消落带为研究区域, 选取优势草本植物狗牙根(人工恢复)草地土壤为研究对象, 裸地作为对照, 探讨消落带土壤有机碳、全氮、全磷和微生物生物量碳、氮和磷含量在一个淹水周期内不同海拔高程上的差异, 并对相关影响因素进行分析, 为认识三峡库区消落带植被修复与重建对土壤微生物生物量和土壤质量的影响提供参考。

1 材料与方法
1.1 研究区概况

汝溪河流域(107° 32'-108° 14' E, 30° 03'-30° 35' N)是位于重庆忠县的长江一级支流, 石宝镇濒临长江北岸, 位于忠县东北部, 距离主城区38 km(图1)。该流域属亚热带东南季风区山地气候, ≥ 10 ℃年积温5787 ℃, 年均温18.2 ℃, 无霜期341 d, 日照时数1327.5 h, 日照率29%, 太阳总辐射能3.5× 105 J· cm-2, 年降水量1200 mm, 相对湿度80%, 四季分明, 雨量充沛, 日照充足。该区域土壤类型主要为石灰性紫色土, 土壤熟化程度较低, 水土流失、土层侵蚀现象严重。

为进行三峡水库消落区的生态恢复, 于2012年3月在重庆忠县石宝镇汝溪河流域构建植被生态修复示范基地(图1)。示范基地建设前期为废弃梯田, 以狗牙根匍匐茎为繁殖体, 行距为20 cm× 20 cm在145~175 m 海拔区间进行栽植, 栽植时物种的生长状况基本一致, 所选岸坡样地平均坡度为26° , 岸坡上接受光照辐射强度大致相同, 土壤预热条件基本一致, 每个海拔面积约为500 m2。取样时, 植被生长状况良好。

图1 研究区域Fig.1 Research region

1.2 样品采集与测定

本研究共选择3个海拔:150(A1)、160(A2)和170(A3) m, 其中150、160和170 m表现为季节性淹水, 一个周期内170 m海拔短时间淹水约100 d, 160 m海拔中期淹水约190 d, 150 m海拔长期淹水约260 d(图2)。取样时, 狗牙根生长状况见表1

图2 2014年1月至2016年10月三峡库区重庆忠县水文图Fig.2 Water level change of the hydro-fluctuation zone of the Three Gorges Reservoir in Zhong County from January 2014 to October 2016

表 1 狗牙根生长状况(平均值± 标准误) Table 1 Basic situation of Cynodon dactylon (means± SE)

在水位退至145 m后, 于2016年6月进行野外取样。在每个高程上划定S形取样带, 分别随机设置3个狗牙根面积为1 m× 1 m的样方, 选试验区内相同海拔的裸地进行对照(CK), 每个样方内按梅花形5点取样, 采样深度为0~20 cm, 剔除可见杂物后混合, 用四分法装袋迅速带回实验室, 一部分土样自然风干, 碾磨并过2.00和0.25 mm筛, 用于测定pH、有机碳、全氮及全磷等理化性质。另一部分土样过2 mm筛后, 立即进行培养, 用于分析土壤微生物生物量碳、氮及磷。

土壤微生物生物量碳(soil microbial biomass carbon, SMBC)的测定采用氯仿熏蒸提取重铬酸钾氧化法[18], 土壤微生物生物量氮(soil microbial biomass nitrogen, SMBN)测定采用氯仿熏蒸提取凯氏定氮法[19]。土壤微生物生物量磷(soil microbial biomass phosphorus, SMBP)用碳酸钠浸提-钼锑抗比色法测定[20]。土样中SOC和TN采用元素分析仪(Elementar Vario EL, Germany)。TP采用钼锑抗比色法[21]。采用土∶ 水=1.0∶ 2.5水浸提, 酸度计法测定土壤pH值, 采用环刀法测定土壤容重。采用烘干法测定土壤含水量[22]。并分别用(1)、(2)和(3)计算SMBP、SMBN和SMBP的含量。

SMBC=EC/kEC (1)

SMBN=EN/kEN (2)

SMBP=EPi/kP (3)

式中:ECENEPi分别为熏蒸土壤与未熏蒸土壤有机碳、氮和磷的差值, kECkENkP分别为SMBC、SMBN和SMBP的转换系数, 取值0.38、0.45和0.40[23]

1.3 数据统计与分析

试验数据采用SPSS 20.0 软件进行双因素方差(Two-way ANOVA)统计分析, 分析不同海拔与不同植被类型对土壤微生物生物量的影响, 并用LSD法检验不同植被类型间的差异性(P< 0.05), 各指标之间的相关关系采用Pearson相关系数法评价, 用Origin 8.5制图。

2 结果与分析
2.1 不同海拔土壤理化性质的差异

土壤含水率呈现A1> A2> A3, 不同海拔间狗牙根土壤含水率无显著性差异, 裸地A1显著高于A2和A3, 同一海拔狗牙根土壤含水率均大于裸地(表2)。狗牙根A2和A3的土壤容重显著高于A1, 裸地A3显著高于A1和A2, 总体表现出A3> A2> A1, 且同一海拔裸地容重均大于狗牙根。狗牙根A1和A2的pH值之间无显著性差异, 但均显著高于A3, 裸地各海拔pH值无显著性差异, 同一海拔pH值狗牙根大于裸地。狗牙根和裸地的有机碳含量均呈现出A2> A1> A3, 且A2和A1无显著性差异, 但均显著高于A3, 同一海拔狗牙根草地有机碳含量均小于裸地。全氮含量A1> A2> A3, 不同海拔狗牙根草地土壤全氮含量差异不显著, 裸地土壤全氮含量不同海拔间均有显著性差异, 同一海拔全氮含量狗牙根均大于裸地。全磷含量狗牙根A3显著高于A1, 裸地A2和A3显著高于A1, 同一海拔全磷含量狗牙根均大于裸地。

表 2 消落带不同海拔土壤的理化性质(平均值± 标准误) Table 2 Soil physiochemical characters of different altitude (means± SE)
2.2 不同海拔狗牙根土壤微生物生物量碳氮磷

狗牙根和裸地SMBC含量在不同海拔间均呈现出A2> A1> A3的规律, 其中狗牙根3个海拔有显著性差异, 裸地A2显著高于A1和A3, A1、A3差异不显著(图3)。同一海拔间SMBC、SMBN、SMBP含量均表现出狗牙根> 裸地, 且具有显著性差异(图4)。双因素方差分析表明, 取样海拔对SMBC含量有显著影响(P< 0.05; 表3), 植被类型则极显著影响SMBC含量(P< 0.01; 表3), 而取样海拔与植被类型的交互作用对土壤SMBC含量无显著影响(P> 0.05; 表3)。SMBN含量呈现出与SMBC相同的规律, 但狗牙根A1和A3无显著性差异。取样海拔对SMBN含量有显著影响, 取样海拔与植被类型的交互作用对土壤SMBN含量也无显著影响(P> 0.05; 表3); 然而, 植被类型则极显著影响各处理组的土壤SMBN含量(P< 0.001, 表3)。狗牙根SMBP含量表现出A1> A3> A2, 且各海拔间差异显著, 裸地A1和A3差异不显著, 但均显著高于A2。SMBP海拔与植被双因素方差结果与SMBC一致。

图3 消落带不同海拔土壤微生物生物量碳、氮、磷Fig.3 The microbial biomass carbon, nitrogen and phosphorus under different altitudes

不同字母表示不同海拔土壤性质存在显著差异(P< 0.05)。Different letters represent siginificant difference at P< 0.05 level.

图4 消落带不同植被类型下土壤微生物生物量碳、氮、磷Fig.4 The microbial biomass carbon, nitrogen and phosphorus under different vegetation
types
“ * * ” P< 0.01; “ * * * ” P< 0.001.

表3 土壤微生物生物量C、N、P含量的双因素方差分析 Table 3 Two-way ANOVA table for soil microbial biomass content
2.3 不同海拔狗牙根土壤微生物生物量碳氮磷比值

狗牙根各指标在不同海拔间均无显著性差异, 裸地SMBC/SMBN A1显著高于A2和A3, SMBC/SMBP A2显著高于A1和A3, SMBC/SOC和SMBN/TN均表现出A2、A3显著高于A1(表4)。同一海拔中, 狗牙根均显著高于裸地, 但SMBC/SMBN和SMBC/SMBP均显著低于裸地。

表4 不同海拔土壤微生物生物量比值的变化(平均值± 标准误) Table 4 The ratio change of the soil microbial biomass under different altitudes (Means± SE)
2.4 土壤微生物生物量碳、氮、磷和土壤理化性质的关系

SMBC、SMBN和SMBP均与土壤含水率呈极显著相关, 与全磷和土壤容重未达到显著性相关(表5)。SMBC与SMBN、SMBP、SOC、TN呈显著或极显著相关, 与pH值显著负相关。SMBN与SOC显著相关, 与TN极显著相关, 与pH值显著负相关。SMBP与SOC、TN呈正相关。

表 5 不同海拔土壤微生物生物量与土壤碳、氮、磷相关性 Table 5 Correlation coefficients between soil microbial biomass and soil carbon, nitrogen and phosphorus under different altitudes
3 讨论

消落带是物质交换频繁的水陆生态系统过渡地带。狗牙根是三峡库区消落带的优势草本植物, 广泛分布于消落带各海拔段, 是水土与环境连接的重要媒介[9]。不同水淹环境中狗牙根具有不同的适应策略, 表土水淹条件下狗牙根通过维持或者促进茎偏上性伸长, 从而增加水淹耐受力[24]; 全淹环境中狗牙根通过减缓生长、损失部分生物量以增加对水淹的耐受性[25]。在人工狗牙根草地重建后, 植被-土壤之间发生植被生长状态、好氧厌氧状态、土壤理化性质等一系列复杂变化。这种周期性的干湿交替现象影响土壤化学过程和土壤养分的转化。土壤微生物生物量是植物养分转化和循环的驱动力, 对土壤肥力和生态系统评价具有重要意义[26]

3.1 消落带土壤理化性质及其对土壤微生物生物量碳、氮、磷含量的影响

土壤含水率随着海拔降低而升高, 这是由于消落带不同海拔淹水时间不同, 低海拔长期淹水且与水体连接。同一海拔间狗牙根土壤含水率均大于裸地(表2), 表明人工植被的恢复有利于水土保持, 与Boegman等[27]研究结果一致。土壤容重表现出与土壤含水率相反的规律, 相关性分析发现, 容重与含水率呈极显著负相关(表5), 与以往研究相符[28]。有研究表明三峡消落带植被恢复后, 根部分泌有机酸使土壤pH值降低, 乔木分泌的有机酸多于草本[29]。本实验中同一海拔狗牙根pH值均低于裸地, 狗牙根土壤pH值170 m显著低于150和160 m(表2), 这可能由于狗牙根分泌有机酸降低了土壤pH值, 而消落带内170 m高程以上种植了人工乔木, 使170 m狗牙根土壤酸性增强。土壤微生物生物量与土壤养分的比值可以反映土壤养分向微生物生物量的周转效率、土壤养分损失和土壤矿物对有机质的固定, 并且其在标记土壤过程或土壤健康变化时要比单独使用微生物生物量或土壤养分的值更有效[30, 31, 32]。本实验中, 土壤微生物生物量碳、氮、磷占土壤有机碳、全氮、全磷百分比的范围分别为0.68%~2.57%、0.68%~3.33%、1.95%~5.23%(表4), 与Vance等[18]研究酸性与非酸性微生物生物量碳占有机碳1.0%~5.3%、Devi等[33]研究混合森林系统微生物生物量氮占全氮2.0%~7.8%和Speir等[34]研究草地牧场微生物生物量磷占全磷2.6%~5.9%相比都略低。值得注意的是, 前人的研究多为植被恢复生长多年的自然生境, 而本研究位于水淹-干旱交替的库区消落带不同海拔, 生物多样性较低, 并且优势草本植物狗牙根每年生长时间较短, 淹水环境下生长缓慢甚至停止生长。各海拔狗牙根微生物生物量占全量比均高于裸地, 说明植被构建有利于土壤微生物的增加。有研究表明人工植被构建后土壤微生物数量和活性均能恢复到接近天然草地的水平[35], 但在消落带特殊生境下, 恢复到天然草地水平可能需要更长的时间。

3.2 消落带不同海拔狗牙根土壤微生物生物量碳、氮、磷含量及其比值差异

SMBC和SMBN的含量160 m高程显著高于150和170 m, 150和170 m差异不显著。这可能由于160 m狗牙根地上生物量显著高于其他海拔(表1), 与洪明等[10]研究发现库区消落带狗牙根种群总生物量和根、茎、叶生物量及茎生物量分配比率为浅水位区段> 未经水淹区段和深水位区段一致。同一海拔中狗牙根SMBC、SMBN和SMBP含量均显著高于裸地(图4), 土壤微生物生物量的增加主要来自凋落物、根系分泌物等积极影响导致能源输入增加[36]。植被构建之后, 土壤孔隙度增加, 土壤团聚结构得到改善[37], 促进了固磷细菌对磷元素的矿化, 且本研究采样时间2016年6月, 消落带正值高温雨季, 高温会促进砂土风化, 可能导致磷含量的增加[38]。而不同海拔间SMBP含量差异却出现与SMBC和SMBN不同的结果, 160 m显著低于150和170 m(图3)。影响土壤微生物生物量磷的因素较多, 施肥、成土母质、微生物体磷的代谢速率、途径和来源等[39, 40]。有学者对热带森林(人为定期收获凋落物)研究发现, 凋落物的移除导致磷的缺乏和限制[41]。消落带退水过程中会带走部分凋落物, 可能导致高海拔160和170 m磷的缺失, 同时雨季雨水的冲刷可能会使磷素下移, 170 m高程可能从更高程未淹水的高磷土壤得到部分磷的补充, 也需要注意产生水体富营养化的风险[42]

土壤SMBC/SMBN的范围是5.32~15.62(表4), 高于蒙古草原报道的5~9[43]; SMBC/SMBP的范围是7.11~19.99(表4), 低于黄土丘陵区报道的20~32[44], 消落带SMBC含量与两地区差异不大, 但SMBN含量低于蒙古草原, SMBP含量高于黄土丘陵区, 这可能与消落带特殊生境有关。有研究表明微生物生物量碳氮比可以反映土壤微生物种类和区系[45]。一般情况下, 细菌碳氮比在5∶ 1 左右, 放线菌在6∶ 1 左右, 真菌在10∶ 1 左右[46, 47]。狗牙根碳氮比较低, 在5~7间, 裸地碳氮比较高, 在8~16间(表4), 表明狗牙根150和160 m土壤以放线菌为主, 170 m以细菌为主, 裸地各海拔土壤以真菌为主。土壤微生物生物量碳氮比、碳磷比与土壤有机质的质量密切相关, 土壤微生物生物量碳氮比、碳磷比越小, 土壤有机质中有效氮、有效磷越丰富[48, 49]。这与本实验结果不完全相符, 各个海拔中狗牙根土壤有机碳略低于裸地, TN和TP均高于裸地, 这可能由于狗牙根部分有机碳用于地上生物量的生长, 土壤有机碳主要来源于地上植物光合作用输入的碳, 以及进入土壤的植物、动物、微生物残体及其分解合成有机物中的碳, 并处于不断分解与合成的动态过程中[50, 51]; SMBC/SMBN和SMBC/SMBP均显著低于裸地(P< 0.05), 表明狗牙根土壤有效氮、有效磷能维持在较高的水平。狗牙根SMBC/SMBN和SMBC/SMBP不同海拔间没有显著性差异(P> 0.05), 而裸地有不同程度的差异, 表明狗牙根重建生长能缩小不同海拔间土壤质量差异, 提高土壤微生物含量, 这也侧面说明狗牙根土壤部分有机碳用于地上部分的生长。

3.3 消落带土壤微生物生物量与理化性质的相关性

SMBC、SMBN与SOC和TN之间具有显著或极显著相关性(表5), SMBC和SMBN分别是SOC和TN中活性较高的部分, 与Arunachalam等[52]研究结果一致, 表明SMBC、SMBN可以作为土壤肥力变化的指标。狗牙根和裸地SMBN、SMBP与SMBC呈极显著相关关系(表5), Jenkinson等[53]研究表明, 土壤微生物对氮素、磷素的固持作用主要取决于土壤微生物本身的生物量大小, 生物量越大固持的越多, 狗牙根草地相对于裸地具有更大的地上生物量和微生物生物量。SMBC、SMBN、SMBP与TP无显著相关性(表5), 与贾国梅等[54]研究结果不同, 但与彭佩钦等[55]研究结果一致, 这可能与采样地区时间不同相关, 而消落带因为水体的冲刷, P元素部分向下转移。SMBC、SMBN、SMBP与土壤含水率呈极显著相关(表5), 水分参与植物和微生物的生命活动, 微生物产生的胞外酶和有机物的扩散都需要在液相中进行, 含水量过高或者过低都会对微生物的量产生不利影响[56], 同时消落带夏季高温条件下水分是微生物生存和繁殖的一个限制性因子。SMBC、SMBN与土壤pH值呈极显著负相关(表5), 与柴雪思等[32]研究结果一致, 土壤pH值影响土壤微生物的种类及活性, 微生物的繁殖生存需要一个适宜的土壤pH值范围, 而库区消落带的微生物可能更适应弱酸的环境, 但对此还需进一步深入研究。

4 结论

在三峡库区消落带中, 人工植被构建对土壤微生物恢复具有重要意义。需要特别注意P元素的下移, 加强水体P含量的检测, 开展长期动态研究。狗牙根土壤有效氮、有效磷高于裸地; 狗牙根土壤营养元素周转速率快于裸地。植被类型对土壤微生物生物量有显著或极显著影响, 海拔对于土壤微生物生物量有显著影响。SMBC、SMBN和SMBP与SOC、TN和土壤含水率有显著或极显著相关性, 与土壤pH值呈不同程度的负相关。本研究的不足之处在于一次采样存在局限, 且只是从土壤微生物生物量碳氮磷的方面去评价土壤质量, 后续需要进行长期多次动态的研究, 并结合微生物群落与植物营养元素等综合进行评价。

The authors have declared that no competing interests exist.

参考文献
[1] Wantzen K M, Rothhaupt K O, Mörtl M, et al. Ecological Effects of Water-Level Fluctuations in Lakes. Hydrobiologia, 2008, 613(1): 1-4. [本文引用:1]
[2] Chen F Q, Xie Z Q. Reproductive allocation, seed dispersal and germination of Myricaria laxiflora, an endangered species in the Three Gorges Reservoir area. Plant Ecology, 2007, 191(1): 67-75. [本文引用:1]
[3] Zhu N N, Guo Q S, Qin A L, et al. Plant community dynamics in the hydro-fluctuation belt of the Three Gorges Reservoir at the Zigui and Wushan Section, East of Fengjie County, China. Acta Ecologica Sinica, 2015, 35(23): 7852-7867.
朱妮妮, 郭泉水, 秦爱丽, . 三峡水库奉节以东秭归和巫山段消落带植物群落动态特征. 生态学报, 2015, 35(23): 7852-7867. [本文引用:1]
[4] Jie S L, Fan D Y, Xie Z Q, et al. Features of leaf photosynthesis and leaf nutrient traits in reservoir riparian region of Three Gorges Reservoir, China. Acta Ecologica Sinica, 2012, 32(6): 1723-1733.
揭胜麟, 樊大勇, 谢宗强, . 三峡水库消落带植物叶片光合与营养性状特征. 生态学报, 2012, 32(6): 1723-1733. [本文引用:1]
[5] Teng M J, Zeng L X, Xiao W F, et al. Research progress on remote sensing of ecological and environmental changes in the Three Gorges Reservoir area, China. Chinese Journal of Applied Ecology, 2014, 25(12): 3683-3693.
滕明君, 曾立雄, 肖文发, . 长江三峡库区生态环境变化遥感研究进展. 应用生态学报, 2014, 25(12): 3683-3693. [本文引用:1]
[6] Dong J, Luo L L, Yang D Y, et al. Characteristics of soil degradation of purple soil sloping field in the Three Gorges Reservoir Area: impoverishment of soil nutrient. Geography and Geo-Information Science, 2007, 23(6): 58-64.
董杰, 罗丽丽, 杨达源, . 三峡库区紫色土坡地土壤退化特征: 土壤养分贫瘠化. 地理与地理信息科学, 2007, 23(6): 58-64. [本文引用:1]
[7] Fan D Y, Xiong G M, Zhang A Y, et al. Effect of water-lever regulation on species selection for ecological restoration practice in the water-level fluctuation zone of Three Gorges Reservoir. Chinese Journal of Plant Ecology, 2015, 39(4): 416-432.
樊大勇, 熊高明, 张爱英, . 三峡库区水位调度对消落带生态修复中物种筛选实践的影响. 植物生态学报, 2015, 39(4): 416-432. [本文引用:1]
[8] Ma L M, Tang Y P, Zhang M, et al. Evaluation of adaptability of plants in Water-Fluctuation-Zone of the Three Gorges Reservoir. Acta Ecologica Sinica, 2009, 29(4): 1885-1892.
马利民, 唐燕萍, 张明, . 三峡库区消落区几种两栖植物的适生性评价. 生态学报, 2009, 29(4): 1885-1892. [本文引用:1]
[9] Wang H F, Zeng B, Li Y, et al. Effects of long-term submergence on survival and recovery growth of four riparian plant species in Three Gorges Reservoir Region, China. Chinese Journal of Plant Ecology, 2008, 32(5): 977-984.
王海锋, 曾波, 李娅, . 长期完全水淹对4种三峡库区岸生植物存活及恢复生长的影响. 植物生态学报, 2008, 32(5): 977-984. [本文引用:2]
[10] Hong M, Guo Q S, Nie B H, et al. Responses of Cynodon dactylon population in hydro-fluctuation belt of Three Gorges Reservoir area to flooding-drying habitat change. Chinese Journal of Applied Ecology, 2011, 22(11): 2829-2835.
洪明, 郭泉水, 聂必红, . 三峡库区消落带狗牙根种群对水陆生境变化的响应. 应用生态学报, 2011, 22(11): 2829-2835. [本文引用:2]
[11] Li Z J, Xiong G M, Deng L Q, et al. Dynamics of antioxidant enzyme activities in roots of Cynodon dactylon and Hemarthria altissima recovering from annual flooding. Acta Ecologica Sinica, 2013, 33(11): 3362-3369.
李兆佳, 熊高明, 邓龙强, . 狗牙根与牛鞭草在三峡库区消落带水淹结束后的抗氧化酶活力. 生态学报, 2013, 33(11): 3362-3369. [本文引用:1]
[12] Han W J, Bai L L, Li C X. Effects of flooding on photosynthesis, growth and nutrient content of Cynodon dactylon. Acta Prataculturae Sinica, 2016, 25(5): 49-59.
韩文娇, 白林利, 李昌晓. 水淹胁迫对狗牙根光合、生长及营养元素含量的影响. 草业学报, 2016, 25(5): 49-59. [本文引用:1]
[13] Li Q, Song L, Wang S M, et al. Influence of water level on nutritional characteristics of Cynodon dactylon population in water-level-fluctuating zone of the Three Gorges Reservoir. Ecological Science, 2015, 34(4): 15-20.
李强, 宋力, 王书敏, . 水位变化对三峡库区消落带狗牙根种群营养特征的影响. 生态科学, 2015, 34(4): 15-20. [本文引用:1]
[14] Nair A, Ngouajio M. Soil microbial biomass, functional microbial diversity, and nematode community structure as affected by cover crops and compost in an organic vegetable production system. Applied Soil Ecology, 2012, 58(58): 45-55. [本文引用:1]
[15] Iqbal J, Hu R, Feng M, et al. Microbial biomass, and dissolved organic carbon and nitrogen strongly affect soil respiration in different land uses: a case study at Three Gorges Reservoir Area, South China. Agriculture Ecosystems & Environment, 2010, 137(3/4): 294-307. [本文引用:1]
[16] Makarov M I, Malysheva T I, Maslov M N, et al. Determination of carbon and nitrogen in microbial biomass of southern-Taiga soils by different methods. Eurasian Soil Science, 2016, 49(6): 685-695. [本文引用:1]
[17] Sparling G P. Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Soil Research, 1992, 30(2): 195-207. [本文引用:1]
[18] Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 1987, 19(6): 703-707. [本文引用:2]
[19] Brookes P C, Land man A, Pruden G, et al. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology & Biochemistry, 1985, 17(6): 837-842. [本文引用:1]
[20] Brookes P C, Powlson D S, Jenkinson D S. Phosphorus in the soil microbial biomass. Soil Biology & Biochemistry, 1984, 16(2): 169-175. [本文引用:1]
[21] Blume H P, Stahr K, Leinweber P. Bodenkundliches Praktikum. Spektrum Akademischer Verlag, 2010. [本文引用:1]
[22] China Soil Science Society of Agricultural Chemistry. General Methods for Soil Agricultural Chemistry Analysis. Beijing: Science Press, 1983.
中国土壤学会农业化学专业委员会. 土壤农业化学常规分析方法. 北京: 科学出版社, 1983. [本文引用:1]
[23] Wu J S. Soil Microbial Biomass Determination Method and Its Application. Beijing: Meteorological Press, 2006.
吴金水. 土壤微生物生物量测定方法及其应用. 北京: 气象出版社, 2006. [本文引用:1]
[24] Chen F Q, Huang Y Z, Zeng X. Biological response of Cynodon dactylon vegetative propagule to simulated flooding. Journal of Tropical and Subtropical Botany, 2010, 18(1): 15-20.
陈芳清, 黄友珍, 曾旭. 狗牙根营养繁殖体对模拟水淹的生物学响应. 热带亚热带植物学报, 2010, 18(1): 15-20. [本文引用:1]
[25] Li Q H, Liu S P, Zhi C Y, et al. Adaptation mechanism of three herbs in the water-level-fluctuation-zone of reservoir to complete submergence. Journal of Tropical and Subtropical Botany, 2013, 21(5): 459-465.
李秋华, 刘送平, 支崇远, . 三种水库消落带草本植物对完全水淹的适应机制研究. 热带亚热带植物学报, 2013, 21(5): 459-465. [本文引用:1]
[26] Kand eler E, Tscherko D, Spiegel H. Long-term monitoring of microbial biomass, N mineralisation and enzyme activities of a Chernozem under different tillage management. Biology and Fertility of Soils, 1999, 28(4): 343-351. [本文引用:1]
[27] Boegman L, Ivey G N, Imberger J. Modeling soil-water dynamics and soil-water carrying capacity for vegetation on the Loess Plateau, China. Agricultural Water Management, 2015, 159(2): 176-184. [本文引用:1]
[28] Wang X P, Pan Y X, Zhang Y F, et al. Temporal stability analysis of surface and subsurface soil moisture for a transect in artificial revegetation desert area, China. Journal of Hydrology, 2013, 507(11): 100-109. [本文引用:1]
[29] Yu Y, Jia Z Q, Zhu Y J, et al. Effects of plantation on the improving of soil properties in vegetation restoration area of high-cold sand y land . Scientia Silvae Sinicae, 2013, 49(11): 9-15.
于洋, 贾志清, 朱雅娟, . 高寒沙地植被恢复区乌柳人工防护林对土壤的影响. 林业科学, 2013, 49(11): 9-15. [本文引用:1]
[30] Sparling G P, Pankhurst C, Doube B M, et al. Soil microbial biomass activity and nutrient cycling an indicator of soil health//Biological Indicators of Soil Health. CAB International, 1997: 97-119. [本文引用:1]
[31] Filep T, Draskovits E, Szabó J, et al. The dissolved organic matter as a potential soil quality indicator in arable soils of Hungary. Environmental Monitoring & Assessment, 2015, 187(7): 1-12. [本文引用:1]
[32] Chai X S, Lei L G, Jiang C S, et al. Characteristics and influencing factors of soil microbial biomass carbon and nitrogen in drawdown area in the Three Gorges Reservoir. Environmental Science, 2016, 37(8): 2979-2988.
柴雪思, 雷利国, 江长胜, . 三峡库区典型消落带土壤微生物生物量碳、氮的变化特征及其影响因素探讨. 环境科学, 2016, 37(8): 2979-2988. [本文引用:2]
[33] Devi N B, Yadava P S. Seasonal dynamics in soil microbial biomass C, N and P in a mixed-oak forest ecosystem of Manipur, North-east India. Applied Soil Ecology, 2006, 31(3): 220-227. [本文引用:1]
[34] Speir T W, Cowling J C, Sparling G P, et al. Effects of microwave radiation on the microbial biomass, phosphatase activity and levels of extractable N and P in a low fertility soil under pasture. Soil Biology & Biochemistry, 1986, 18(4): 377-382. [本文引用:1]
[35] Jiang Y L, Zhao T, Yan H, et al. Effect of different land uses on soil microbial biomass carbon, nitrogen and phosphorus in three vegetation zones on Loess Hilly Area. Bulletin of Soil & Water Conservation, 2013, 33(6): 62-68.
蒋跃利, 赵彤, 闫浩, . 黄土丘陵区不同土地利用方式对土壤微生物量碳氮磷的影响. 水土保持通报, 2013, 33(6): 62-68. [本文引用:1]
[36] Bolat I, Sensoy H, Ozer D. Short-term changes in microbial biomass and activity in soils under black locust trees ( Robinia pseudoacacia L. ) in the northwest of Turkey. Journal of Soils and Sediments, 2015, 15(11): 2189-2198. [本文引用:1]
[37] Lei M, Li C X, Chen W, et al. Effects of different land use patterns on soil enzymes activities and chemical properties on riverbank slopes of the Three Gorges Reservoir. Scientia Silvae Sinicae, 2012, 48(11): 15-22.
雷明, 李昌晓, 陈伟, . 三峡水库岸坡系统不同用地类型对土壤酶活性和土壤化学性质的影响. 林业科学, 2012, 48(11): 15-22. [本文引用:1]
[38] Ren Q S, Ma P, Li C X, et al. Evaluation of bacterial diversity under different herb vegetation types in the hydro-fluctuation zone of the Three Gorges Reservoir in China. Acta Ecologica Sinica, 2016, 36(11): 3261-3272.
任庆水, 马朋, 李昌晓, . 三峡库区消落带两种草本植被土壤细菌群落多样性. 生态学报, 2016, 36(11): 3261-3272. [本文引用:1]
[39] Xu Y C, Shen Q R, Ran W. Effects of zero-tillage and application of manure on soil microbial biomass C, N, and P after sixteen years of cropping. Acta Pedologica Sinica, 2002, 39(1): 83-90.
徐阳春, 沈其荣, 冉炜. 长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响. 土壤学报, 2002, 39(1): 83-90. [本文引用:1]
[40] Zhao T, Yan H, Jiang Y L, et al. Effects of vegetation types on soil microbial biomass C, N, P on the Loess Hilly Area. Acta Ecologica Sinica, 2013, 33(18): 5615-5622.
赵彤, 闫浩, 蒋跃利, . 黄土丘陵区植被类型对土壤微生物量碳氮磷的影响. 生态学报, 2013, 33(18): 5615-5622. [本文引用:1]
[41] Liu L, Gundersen P, Zhang W, et al. Effects of nitrogen and phosphorus additions on soil microbial biomass and community structure in two reforested tropical forests. Scientific Reports, 2015, 10(1038): 14378-14388. [本文引用:1]
[42] Yang Y J. Dynamic Changes of Soil Chemical Properties under Artificial Vegetations in the Hydro-fluctuation Zone of the Three Gorges Reservoir. Chongqing: Southwest University, 2014.
杨予静. 三峡库区消落带不同人工植被土壤化学性质动态变化. 重庆: 西南大学, 2014. [本文引用:1]
[43] Li X Z, Qu Q H. Soil microbial biomass carbon and nitrogen in mongolian grassland . Acta Pedologica Sinica, 2002, 39(1): 91-98.
李香真, 曲秋皓. 蒙古高原草原土壤微生物量碳氮特征. 土壤学报, 2002, 39(1): 91-98. [本文引用:1]
[44] Xue S, Liu G B, Dai Q H, et al. Effect of differ ent vegetation restor ation models on soil microbial biomass in eroded hilly Loess Plateau. Journal of Natural Resources, 2007, 22(1): 20-27.
薛萐, 刘国彬, 戴全厚, . 不同植被恢复模式对黄土丘陵区侵蚀土壤微生物量的影响. 自然资源学报, 2007, 22(1): 20-27. [本文引用:1]
[45] Yang J J, An S S, Zhang H, et al. Effect of erosion on soil microbial biomass and enzyme activity in the Loess Hills. Acta Ecologica Sinica, 2015, 35(17): 5666-5674.
杨佳佳, 安韶山, 张宏, . 黄土丘陵区小流域侵蚀环境对土壤微生物量及酶活性的影响. 生态学报, 2015, 35(17): 5666-5674. [本文引用:1]
[46] Wang F, Zhang J S, Gao P C, et al. Effects of application of different organic materials on soil microbiological properties and soil fertility in Weibei rainfed highland . Plant Nutrition and Fertilizer Science, 2011, 17(3): 702-709.
王芳, 张金水, 高鹏程, . 不同有机物料培肥对渭北旱塬土壤微生物学特性及土壤肥力的影响. 植物营养与肥料学报, 2011, 17(3): 702-709. [本文引用:1]
[47] Wardle D A. Controls of temporal variability of the soil microbial biomass: A global-scale synthesis. Soil Biology and Biochemistry, 1998, 30(13): 1627-1637. [本文引用:1]
[48] Breuer L, Huisman J A, Keller T, et al. Impact of a conversion from cropland to grassland on C and N storage and related soil properties: Analysis of a 60-year chronosequence. Geoderma, 2006, 133(1/2): 6-18. [本文引用:1]
[49] Cleveland C C, Liptzin D. C: N: P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass?. Biogeochemistry, 2007, 85(3): 235-252. [本文引用:1]
[50] Wu Y, Jiang C S, Hao Q J, et al. Seasonal dynamics of soil active carbon pool in a purple paddy soil in southwest China. Environmental Science, 2012, 33(8): 2804-2809.
吴艳, 江长胜, 郝庆菊. 西南地区紫色水稻土活性碳库的季节动态. 环境科学, 2012, 33(8): 2804-2809. [本文引用:1]
[51] Li F, Zhang W L, Liu J, et al. Soil microbial activities in the water-level-fluctuating zone of Three Gorges Reservoir area during discharging period. Chinese Journal of Ecology, 2013, 32(4): 968-974.
李飞, 张文丽, 刘菊, . 三峡水库泄水期消落带土壤微生物活性. 生态学杂志, 2013, 32(4): 968-974. [本文引用:1]
[52] Arunachalam A, Pey H N. Ecosystem restoration of jhum fallows in northeast india: microbial C and N along altitudinal and successional gradients. Restoration Ecology, 2003, 11(11): 168-173. [本文引用:1]
[53] Jenkinson D S, Powlson D S. The effects of biocidal treatments on metabolism in soil-V: A method for measuring soil biomass. Soil Biology & Biochemistry, 1976, 8(3): 167-177. [本文引用:1]
[54] Jia G M, He L, Cheng H, et al. Ecological stoichiometry characteristics of soil microbial biomass carbon, nitrogen and phosphorus under different vegetation covers in three gorges reservoir area. Research of Soil and Water Conservation, 2016, 23(4): 23-27.
贾国梅, 何立, 程虎, . 三峡库区不同植被土壤微生物量碳氮磷生态化学计量特征. 水土保持研究, 2016, 23(4): 23-27. [本文引用:1]
[55] Peng P Q, Wu J S, Huang D Y, et al. Microbial biomass C, N, P of farmland soils in different land uses and croppingsystems in Dongting Lake region. Acta Ecologica Sinica, 2006, 26(7): 2261-2267.
彭佩钦, 吴金水, 黄道友, . 洞庭湖区不同利用方式对土壤微生物生物量碳氮磷的影响. 生态学报, 2006, 26(7): 2261-2267. [本文引用:1]
[56] Pang X, He W Q, Yan C R, et al. Effect of tillage and residue management on dynamic of soil microbial biomass carbon. Acta Ecologica Sinica, 2013, 33(4): 1308-1316.
庞绪, 何文清, 严昌荣, . 耕作措施对土壤水热特性和微生物生物量碳的影响. 生态学报, 2013, 33(4): 1308-1316. [本文引用:1]